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Electrochemical and spectroelectrochemical experiments at
an ITO electrode clarified that O=Fe!Y (4-TMPyP) was formed
via le~ + 1H™ oxidation process of Fe''(4-TMPyP) in pH 7.4
PBS and the electrogenerated O=Fe!” (4-TMPyP) selectively
reacted with NO to give NO,™ as the final product through an
electrocatalytic cycle.

It is now well known that nitric oxide (NO) plays funda-
mental roles as a cell-signal molecule, anti-infective agent
and an antioxidant in many biological processes.! Most of the
above phenomena can be explained by the binding of NO to
lower valent Fe'™ or Fe' porphyrins. However, recent re-
searches suggested that high-valent porphyrins are important
biological transients in numerous hemoproteins.? For example,
reduction of ferrylmyoglobin (O=Fe!YMb) and ferrylhemoglo-
bin (O=Fe'VHb) by nitric oxide is considered as a protective
process against ferryl hemoprotein-induced oxidations in in-
flammation cells.?

Most of oxoiron(IV) porphyrins have been generated by
chemical oxidants such as hydrogen peroxide, iodosylbenzene,
and hypochlorites.* On the other hand, the direct electrochemi-
cal oxidation of iron(IIl) porphyrins to oxoiron(IV) species has
also been reported.’ many oxoiron(IV) porphyrins are known to
electrocatalytically oxidize organic substrates® and some an-
ions.” However, the electrocatalytic oxidation of NO by oxoir-
on(IV) porphyrin has not yet been studied thoroughly. In the
present study, we studied from the standpoint of electrochemis-
try on the role of high-valent O=Fe!¥ (4-TMPyP) (4-TMPyP=-
meso-tetrakis(N-methyl-pyridinium-4-yl)porphyrin) in NO oxi-
dation, and found that O=FeV(4-TMPyP) showed an
effective catalysis towards NO oxidation and an excellent selec-
tivity for NO against nitrite.

Electroconductive and optically-transparent ITO(indium tin
oxide)-coated glass was used as the test electrode. The resis-
tance of the ITO was about 10 Qcm™~2. The optically transparent
thin layer electrode (OTTLE) cell was prepared by using two
ITO glass plates (4 x 1 cm), and the light pass length was about
0.2 mm. NO-saturated solution was prepared by bubbling 1% or
5% NO-Ar mixed gas (Nippon Sanso) into 50 mM phosphate
buffer solution (PBS). Saturated concentration of NO has been
estimated from Ostwald’s® solubility coefficient for a given par-
tial pressure of NO.

Electrochemical generation of O=Fe'¥ (4-TMPyP) has been
confirmed by oxidation of Fe'"(4-TMPyP) in an OTTLE cell at
room temperature. Figure 1 shows the spectral change of
Fe'(4-TMPyP) at different potentials. Fe(4-TMPyP) exhibits
Amax at 423, 600, and 630 nm, while the oxidized form exhibits
Amax at 426, 517, and 553 nm, also clear isosbestic points were
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Figure 1. Typical absorption spectra of 0.2mM Fe(4-
TMPyP) in an OTTLE cell at different applied potentials. The
inset shows the Nernst plot of E° vs pH. *O.C. means open cir-
cuit potential.

observed at 409, 445, 518, and 572 nm. All these values were in
good agreement with those observed for electrochemical gen-
eration of O=Fe!V(4-TMPyP) in an alkaline solution.” A plot
of log[O=Fe! (4-TMPyP)|/[Fe"(4-TMPyP)] vs Ep. Wwith a
slope of 60mV suggested that the number of electrons trans-
ferred, n, is 1. The pH dependence of the formal potential
(E°") between 6.0 and 8.8 was found to be —60 mV/pH (inset
of Figure 1). These results indicate that O=Fe!V(4-TMPyP)
was formed via le~ + 1H™ process as shown in Eq 1.

HO-Fe(4-TMPyP)-e~ — O=Fe!V(4-TMPyP) + H* (1)

Further, E® at a physiological pH (7.4) was estimated to be
0.71V vs Ag|AgCL

Figure 2 shows cyclic voltammograms (CVs) of NO and
Fe'(4-TMPyP) in pH 7.4 PBS at an ITO electrode. The direct
oxidation currents of NO (Figure 2d) is small because of the
large overpotential on hydrophilic ITO electrode, but the pre-
sence of Fe''(4-TMPyP) (Figure 2a) causes a significant current
increase. The enhanced currents are larger than a simple sum of
oxidation currents in Figures 2b and 2d. A comparison of Figure
2a with Figure 2b clarifies that the oxidation of NO proceeds
along with the oxidation of Fe(4-TMPyP). These results sug-
gest the electrocatalytic properties of Fe'''((4-TMPyP) towards
NO oxidation through an E-C mechanism.

Interestingly, an addition of nitrite into pure Fe(4-
TMPyP) solution causes little change in the cyclic voltammo-
grams (Figures 2b and 2c). This indicates that nitrite can not
be oxidized by O=Fe!"(4-TMPyP). Figure 2b showed further
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Figure 2. Cyclic voltammograms of 20 uM Fe'(4-TMPyP) at
an ITO electrode in 50 mM PBS with pH 7.4, (a) with and (b)
without 18.3 uM NO, and (c) with 20 uM NO, ™. Curve (d) was
obtained in pure PBS with 18.3 uM NO. Scan rate, 10mVs~!.

oxidation of O=Fe'(4-TMPyP) above 0.9 V. It was confirmed
by the spectroelectrochemistry that the oxidized species at 1.1V
was very unstable and degraded into non-porphyrinic species.
Such an oxidized specie is speculated to be O=Fe! (4-TMPyP)
Jr-cation radical, corresponding to so-called Compound I in
horse radish peroxidase.

Figure 3 shows the reactivity of electrogenerated
O=FeV(4-TMPyP) for NO and NO,”. O=Fe!V(4-TMPyP)
was quickly reduced back to Fe(4-TMPyP) by the addition
of NO (Figure 3a). However, the addition of nitrite (Figure
3c) results in a slow decay rate of O=Fe!¥ (4-TMPyP). The ini-
tial slope in the decay curve corresponds to the reduction rate of
O=Fe!V(4-TMPyP). The ratio of the slopes between NO and
NO,~, which were corrected for the natural decay (Figure
3b), was roughly 120. This value is almost the same as esti-
mated ratio of free NO concentration, 128, in the solutions of
NO and NO,~, because 1 mol% nitrite even in pH 7.4 can be
disproportinated into nitrate and NO (0.64mol%).° In this
sense, O=Fe!¥ (4-TMPyP) can not oxidize nitrite. Further, prod-
uct analysis'® showed that the concentration of nitrite was di-
rectly proportional to the amount of NO added into
O=FeV(4-TMPyP) solution. This indicated that nitrite is
formed as the final product of NO oxidation by O=Fe!V(4-
TMPyP).

Catalytic oxidation cycle of NO is shown in Scheme 1. In
our experiments, O=Fe!¥(4-TMPyP) selectively oxidizes NO
radical against NO, ™ anion. This suggests that NO radical at-
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Figure 3. UV-vis spectral change at 426 nm monitored
for the decay of electrogenerated O=Fe'¥(4-TMPyP) to
Fe''(4-TMPyP) in 50 mM PBS (a) with and (b) without
82.2uM NO, and (c) with 100 uM NO, ™.
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Scheme 1. Proposed reaction mechanism for the catalytic oxida-
tion cycle of NO by oxoiron(IV)porphyrin.

tacks the negatively charged oxygen interacting with iron site,
and an electron on the oxygen atom transfers to Fe!V site by a
synchronous process. On the other hand, it was observed that
the catalytic current for NO oxidation was increased with in-
creasing pH and the presence of NO,™ gave no change in the
spectrum of Fe'(4-TMPyP). These results indicate that the in-
termediate ONO-Fe™(4-TMPyP) in Scheme 1 is not so stable
and is easily replaced by OH™ to regenerate original HO-
Fe'(4-TMPyP). Although present O=Fe!V(4-TMPyP) could
not oxidize NO,~, the reaction between oxoiron(IV) TMPS
and NO; radical has been reported to be quite fast.!" These re-
sults suggest that O=Fe!V(4-TMPyP) has excellent selectivity
for NO radical oxidation. O=Fe'V (4-TMPyP) 7r-cation radical
is speculated to participate in the nitrite oxidation, because
the redox potential of O=Fe!V(4-TMPyP) m-cation radical is
higher than that of O=Fe!V (4-TMPyP). Further work is in proc-
ess.

In conclusion, the present study clearly demonstrates the
catalytic activity and selectivity of O=Fe!V (4-TMPyP) for nitric
oxide oxidation under physiological conditions. These observa-
tions well lead to possible development of highly selective NO
biosensor and further explore the significance of NO upon Fe!V/
Fe redox couple in biological system.
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